1,390 research outputs found

    Imipenem resistance in clinical Escherichia coli from Qom, Iran

    Get PDF
    OBJECTIVE: The emergence of metallo-\u3b2-lactamase-producing Enterobacteriaceae is a worldwide health concern. In this study, the first evaluation of MBL genes, bla IMP and bla VIM , in Escherichia coli resistant to imipenem isolated from urine and blood specimens in Qom, Iran is described. Three hundred urine and blood specimens were analysed to detect the presence of E. coli. Resistance to imipenem and other antimicrobials was determined by disk diffusion and MIC. MBL production was screened using CDDT. PCR was also carried out to determine the presence of bla IMP and bla VIM genes in imipenem-resistant isolates. RESULTS: In total, 160 E. coli isolates were collected from March to May 2016. According to disk diffusion, high-level of resistance (20%) to cefotaxime was observed, whereas the lowest (1%) was detected for tetracycline. In addition, five isolates showed resistance to imipenem with a MIC\u2009 65\u20094 \ub5g/mL. CDDT test confirmed that five isolates were MBL-producing strains, but no bla IMP and bla VIM genes were detected. Results of this study show a very low level of resistance to imipenem in our geographical area

    System and Method for Detecting Cracks and their Location

    Get PDF
    A system and method are provided for detecting cracks and their location in a structure. A circuit coupled to a structure has capacitive strain sensors coupled sequentially and in parallel to one another. When excited by a variable magnetic field, the circuit has a resonant frequency that is different for unstrained and strained states. In terms of strained states, the resonant frequency is indicative of a region of the circuit that is experiencing strain induced by strain in a region of the structure in proximity to the region of the circuit. An inductor is electrically coupled to one end of each circuit. A magnetic field response recorder wirelessly transmits the variable magnetic field to the inductor and senses the resonant frequency of the circuit so-excited by the variable magnetic field

    Type 2 Diabetes Mellitus-Induced Hyperglycemia in Patients with NAFLD and Normal LFTs: Relationship to Lipid Profile, Oxidative Stress and Pro-Inflammatory Cytokines

    Get PDF
    Type 2 diabetes mellitus is associated with dyslipdemia, insulin resistance and non alcoholic fatty liver disease. The purpose of the current study was to assess whether type 2 diabetes mellitus-induced hyperglycemia has an effect on the lipid profile and release of oxidative stress markers and inflammatory mediators in patients with non alcoholic fatty liver disease and normal liver function tests which may in turn lead to enhancing the pathogenicity of this liver disease. For this purpose, one hundred and five outpatients, matched in age and weight, were classified into two groups: the first group consisted of patients with non alcoholic fatty liver disease and the second group consisted of patients with non alcoholic fatty liver disease in conjunction with hyperglycemia due to the presence of type 2 diabetes mellitus. In all patients, lipid profile, oxidative stress, and inflammatory mediators were assessed by measuring serum concentrations of triglycerides, low density lipoprotein, hydrogen preroxide, malondialdehyde, tumor necrosis factor-alpha and interleukin-6, respectively. In the studied population, it was found that the presence of type 2 diabetes mellitus-induced hyperglycemia significantly impaired lipid profile, and significantly enhanced the formation of hydrogen preroxide and malondialdehyde as well as significantly increased the release of tumor necrosis factor-alpha and interleukin-6 in the second group of patients. In addition, plasma glucose level showed significant positive correlation with hydrogen peroxide, malondialdehyde, tumor necrosis factor-alpha and interleukin-6. From the previous results, it was concluded that the presence of type 2 diabetes mellitus-induced hyperglycemia results in significant increase in lipid profile, oxidative stress markers and inflammatory mediators in patients with non alcoholic fatty liver disease and normal liver function tests. For this reason, further research studies may be essential to evaluate the benefit of adding suitable antioxidant and anti-inflammatory drugs to the treatment regimen for this group of patients. In addition, regular monitoring of blood glucose levels and liver function tests should be advised to this category of patients to reduce liver fat deposition and avoid the development of non alcoholic steatohepatitis, cirrhosis or liver cancer and their related complications

    Multisensory causal inference in the brain

    Get PDF
    At any given moment, our brain processes multiple inputs from its different sensory modalities (vision, hearing, touch, etc.). In deciphering this array of sensory information, the brain has to solve two problems: (1) which of the inputs originate from the same object and should be integrated and (2) for the sensations originating from the same object, how best to integrate them. Recent behavioural studies suggest that the human brain solves these problems using optimal probabilistic inference, known as Bayesian causal inference. However, how and where the underlying computations are carried out in the brain have remained unknown. By combining neuroimaging-based decoding techniques and computational modelling of behavioural data, a new study now sheds light on how multisensory causal inference maps onto specific brain areas. The results suggest that the complexity of neural computations increases along the visual hierarchy and link specific components of the causal inference process with specific visual and parietal regions

    Absence of singular superconducting fluctuation corrections to thermal conductivity

    Full text link
    We evaluate the superconducting fluctuation corrections to thermal conductivity in the normal state which diverge as T approaches T_c. We find zero total contribution for one, two and three-dimensional superconductors for arbitrary impurity concentration. The method used is diagrammatic many-body theory, and all contributions -- Aslamazov-Larkin (AL), Maki-Thompson (MT), and density-of-states (DOS) -- are considered. The AL contribution is convergent, whilst the divergences of the DOS and MT diagrams exactly cancel.Comment: 4 pages text; 2 figure

    Thin-Film Magnetic-Field-Response Fluid-Level Sensor for Non-Viscous Fluids

    Get PDF
    An innovative method has been developed for acquiring fluid-level measurements. This method eliminates the need for the fluid-level sensor to have a physical connection to a power source or to data acquisition equipment. The complete system consists of a lightweight, thin-film magnetic-field-response fluid-level sensor (see Figure 1) and a magnetic field response recorder that was described in Magnetic-Field-Response Measurement-Acquisition System (LAR-16908-1), NASA Tech Briefs, Vol. 30, No. 6 (June 2006), page 28. The sensor circuit is a capacitor connected to an inductor. The response recorder powers the sensor using a series of oscillating magnetic fields. Once electrically active, the sensor responds with its own harmonic magnetic field. The sensor will oscillate at its resonant electrical frequency, which is dependent upon the capacitance and inductance values of the circuit

    Magnetic Field Response Measurement Acquisition System

    Get PDF
    This paper presents a measurement acquisition method that alleviates many shortcomings of traditional measurement systems. The shortcomings are a finite number of measurement channels, weight penalty associated with measurements, electrical arcing, wire degradations due to wear or chemical decay and the logistics needed to add new sensors. Wire degradation has resulted in aircraft fatalities and critical space launches being delayed. The key to this method is the use of sensors designed as passive inductor-capacitor circuits that produce magnetic field responses. The response attributes correspond to states of physical properties for which the sensors measure. Power is wirelessly provided to the sensing element by using Faraday induction. A radio frequency antenna produces a time-varying magnetic field used to power the sensor and receive the magnetic field response of the sensor. An interrogation system for discerning changes in the sensor response frequency, resistance and amplitude has been developed and is presented herein. Multiple sensors can be interrogated using this method. The method eliminates the need for a data acquisition channel dedicated to each sensor. The method does not require the sensors to be near the acquisition hardware. Methods of developing magnetic field response sensors and the influence of key parameters on measurement acquisition are discussed. Examples of magnetic field response sensors and the respective measurement characterizations are presented. Implementation of this method on an aerospace system is discussed
    • …
    corecore